
 77 

 

 

Chapter 2  

Materials and Methods  
 

Part II Statistical Analysis of Functional MRI 
Time Series 
 

 

 

2.4 Introduction ........................................................................................................ 78 

2.5 Spatial preprocessing ......................................................................................... 79 
2.51 Realignment ....................................................................................................... 79 
2.51a Spatial ............................................................................................................... 79 
2.51b Temporal .......................................................................................................... 79 
2.52 Spatial normalisation ......................................................................................... 80 
2.53 Spatial smoothing ............................................................................................... 81 

2.6 Characterising haemodynamic responses using the General Linear Model 82 
2.61 Parameter estimation using the General Linear Model ...................................... 82 
2.62 Statistical inference and the Theory of Gaussian Fields .................................... 85 
2.62a Anatomically constrained hypotheses .............................................................. 85 
2.62b Anatomically open hypotheses: levels of inference ......................................... 86 

2.7 Event-related fMRI ............................................................................................ 87 

2.8 Optimising experimental design ....................................................................... 89 

2.9 Inferences about subjects and populations: Random vs Fixed effects 
analyses ..................................................................................................................... 90 
 
 
 
 



 78 

2.4 Introduction 

 

Functional neuroimaging techniques provide a means for making inferences 

about differences in regional brain activity between different conditions or states. To 

localise a function to a specific anatomical region it is critical that the experimental 

design allows one to unambiguously consider only the effect of the appropriate 

cognitive manipulation. Identifying functionally specialised brain regions generally 

proceeds using statistical parametric mapping (SPM). Functional specialisation is a 

fundamental principle of brain organisation and this thesis focuses on functional 

specialisation for learning within the human medial temporal lobe. It is important, 

however, to acknowledge that the brain is also organised on the basis of functional 

integration, where integration within and among specialised areas is mediated by 

effective connectivity. Advances in SPM have enabled characterisation of functional 

integration, an example of which is given in Chapter 5 part I. 

 

In order to assign an observed response to a particular brain structure or 

cortical area, the data must conform to a known anatomical space. Hence, the 

analysis of fMRI data starts with a series of spatial transformations of brain images 

aimed at reducing artifactual variance components in each voxel time series. The 

imaging time series is first realigned to a common reference frame to correct for 

subject movement during scanning. After realignment the data are transformed using 

linear and nonlinear mappings into a standard anatomical space (Friston et al., 

1995a). This normalisation procedure allows averaging data across subjects and 

permits data reporting within a standardised reference co-ordinate system. Following 

this preprocessing, a statistical model must be created in order to draw inferences 
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about differences in regional brain activity between different conditions (Friston et 

al., 1995b). Finally, these inferences must be corrected to guard against Type I error. 

 

2.5 Spatial preprocessing 

 

2.51 Realignment 

2.51a Spatial 

Head motion during fMRI can give rise to artifactual change in signal 

intensity. Despite subjects being firmly immobilised with soft head pads, even the 

best subjects show movement up to a millimetre or so. Realignment removes 

variance from a time series which would otherwise be attributable to error (hence 

decreased sensitivity) or to evoked effects i.e. if movement is correlated with the 

cognitive task. 

 

Realignment involves the following steps: 

1. estimating the 6 parameters of the affine ‘rigid body’ transformation that 

minimises the [sum of squared] differences between each successive scan and the 

first. In three dimensions, a rigid body transformation can be defined by 6 

parameters, typically three translations and three rotations about orthogonal axes. 

2. Applying the transformation by resampling the data using sinc or trilinear 

interpolation. 

 

2.51b Temporal 

In multi-slice acquisitions, different slices will be acquired at slightly 

different times. In fMRI analysis, stimulus onset times are specified in scans, hence 
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posing the problem for event-related fMRI studies (see later) that certain slices will 

be more sensitive to a particular model of haemodynamic responses. Temporal 

realignment ensures that the data from all slices within a given volume correspond to 

the same time point. This is achieved using sinc interpolation over time (when 

temporal dynamics of the evoked responses are important, i.e. event-related fMRI 

studies, and the TR sufficiently small to permit interpolation).  

 

2.52 Spatial normalisation 

Realignment produces a mean image for the time series. This mean image is used 

to estimate the warping parameters that map this image onto a template (in fMRI this 

is a template EPI image) that already conforms to a standard anatomical space (in the 

case of SPM this is the space defined by the atlas of Talairach and Tournoux, 1988). 

The estimation is achieved using: 

1. A 12-parameter affine transformation where the parameters constitute a spatial 

transformation matrix (the affine transformation is similar to that used during 

realignment but also includes zooms and shears). 

2. Low-frequency basis functions (a discrete cosine set) where the parameters to be 

estimated are the coefficients of the basis functions employed. 

 

A Bayesian framework is used to estimate the parameters of both models, where 

one wants to find the deformation that is most likely given the data. The deformation 

is updated iteratively to minimise the sum of squared differences between the 

template and the deformed image and reflects the probability of actually getting that 

image if the transformation was correct. Prior information about the likelihood of a 
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given transformation is incorporated by weighting the least squares (Ashburner et al., 

1997). 

 

This procedure can be extended to allow normalisation across image modalities, 

allowing, for example, the SPM obtained from a fMRI time series to be overlaid on 

an individual subject’s structural T1 image. First, that subject’s T1 image must be 

mapped into the same space as the EPI images. Here, the difference between the EPI 

template and T1 image can be minimised using a combination of templates depicting 

gray, white, CSF, and skull tissue partitions. This approach was adopted in the first 

experiment reported in this thesis (chapter 3). 

 

2.53 Spatial smoothing 

After normalisation, the fMRI data are smoothed by applying a Gaussian kernel 

(point spread function), of known width, to each voxel. The motivations for 

smoothing are: 

 

1. Smoothing the data render them more parametric in their distribution and ensures 

the validity of parametric statistical tests. 

2. Smooth data is one of the assumptions of Gaussian Field Theory (see later). 

3. In order to average across subjects it is necessary to smooth so that regional 

effects are expressed at a spatial scale where homologies in functional anatomy 

exist over subjects. 

4. The matched filter theorem states that the optimum smoothing kernel 

corresponds to the size of the effect anticipated. According to optical imaging 

experiments, the spatial scale of the haemodynamic response is about 2-5 mm. 
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2.6 Characterising haemodynamic responses using the General Linear Model 

 

Following spatial preprocessing, the data are ready for statistical analysis. In 

the absence of prior information regarding the physical location of a particular 

function, statistical analysis of evoked haemodynamc responses must test for 

experimentally-induced effects at each intracerebral voxel individually and 

simultaneously. This involves two steps. Firstly, statistics indicating evidence against 

the null hypothesis (i.e. no experimentally-induced effect) are computed at each 

voxel. This statistic is usually a t or F statistic and is based on the parameter 

estimates calculated using the general linear model. This procedure results in an 

‘image’ of statistics (i.e. SPM). Secondly, an inference must be drawn from this 

SPM, reliably locating voxels where an effect is present whilst controlling against the 

probability of false positives. 

 

Data analysis as implemented in SPM is parametric. Statistics with a known 

null distribution are used, such that under the null hypothesis, the probability of 

obtaining a statistic greater than, or equal to, that observed can be computed. The 

statistical model used is a special case of the general linear model. 

 

2.61 Parameter estimation using the General Linear Model 

Commonly used parametric models, such as linear regression, t-tests and 

analysis of variance (ANOVA) are special cases of the general linear model. This 

model explains variation in the data, Y, in terms of a linear combination of the 

explanatory variables (x), plus an error term: 
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Yj  =  xj1β1  +  … +  xjlβl  + … +  xjLβL  +  εj. 

 

The βl are unknown parameters, corresponding to each of the L explanatory variables 

for the jth observation of Y. The errors ε are assumed to be identically and normally 

distributed.  

 

For J observations of Y, the general linear model can be expressed in matrix 

formulation: 

 

Y  =  Xβ  +  ε 

 

for the column vector of observations Y, the column vector of error terms ε and the 

column vector of parameters β; β = [β1 . . . βj . . . βJ]T. Matrix X, of size J x L, is the 

design matrix. This matrix has one row per observation and one column per model 

parameter. The number of parameters L is (usually) less than the number of 

observations J hence the simultaneous equations implied by the general linear model 

(obtained by expanding the matrix formulation with ε=0) cannot be solved (it is 

overdetermined). Therefore, some method is required for estimating parameters that 

“best fit” the data. The method adopted is that of least squares. 

 

Each column in the design matrix (X) corresponds to some effect that one has 

built into the experiment, such as the alternating ‘boxcar’ function modelling 

alternating activation and control epochs in the experiment presented in chapter 3, or 

effects that may confound the results. The latter include a series of terms that are 
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designed to remove or model low-frequency variations in signal due to artifacts such 

as aliased biorhythms or scanner drift. The relative contribution of each of these 

columns to the experimental variance (i.e. the parameter estimate for each column) is 

assessed using generalised least squares estimators.  

 

Inferences about the parameter estimates are made using their estimated 

variances. This allows for two types of statistical test. One can test the null 

hypothesis that all the estimates are zero using the F statistic to give a SPM{F}or, 

alternatively, that some particular linear combination or a “contrast” (e.g. a 

subtraction) of the estimates is zero using a SPM{T}. The T statistic is calculated by 

dividing the contrast (specified by contrast weights) of parameter estimates by the 

standard error of that contrast. This error term is estimated using the variance of the 

residuals about the least squares fit. An example of contrast weights could be [1 –1 0 

0 …] to compare the differential responses evoked by two conditions that have been 

modelled by the first two condition-specific regressors (columns) in the design 

matrix. 

 

As stated above, an important assumption in the analysis of time-series is that 

the residuals are identically and normally distributed. However, the haemodynamic 

response is of longer duration than the typical scan acquisition time, which leads to 

serial correlations among the error terms. The general linear model accounts for these 

autocorrelations by imposing a known temporal smoothing function on the time-

series and adjusting the estimators and degrees of freedom accordingly (Worsley and 

Friston, 1995). 
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2.62 Statistical inference and the Theory of Gaussian Fields 

As already described, SPM calculates the significance of brain activity in a 

voxel-wise manner. However, in many instances, one cannot have an a priori 

prediction for the precise voxel which is going to be activated in a particular 

condition. Inferences can be of two sorts depending on whether one has an a priori 

hypothesis about the particular region of the brain engaged. In classical statistics, 

multiple tests require a correction (such as Bonferroni correction) for the number of 

tests performed on the data. If the hypothesis is not constrained by anatomy (i.e. the 

null hypothesis states there is no effect anywhere in the brain), the p values of the 

ensuing maxima must be corrected for multiple comparisons. This correction is 

based on Gaussian field theory, which takes into account the fact that neighbouring 

voxels are not independent by virtue of spatial smoothing in the original EPI images. 

This correction is similar to a Bonferroni correction for multiple comparisons but 

less severe provided that the data are sufficiently smooth. Alternatively, if the 

hypothesis is anatomically constrained to effects in a particular brain region, the 

uncorrected p value associated with the height (magnitude) of the local maximum in 

that region of the SPM can be used to reject the null hypothesis.  

 

2.62a Anatomically constrained hypotheses 

If one has predicted activation in a particular brain region, a correction of the 

p value in this region for the entire search volume is inappropriate. As the a priori 

hypothesis is regional, and not voxel-specific, some form of correction is still 

required. This can be achieved by prespecifying an appropriate search volume and 

making the appropriate correction (Worsley et al., 1996). 
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2.62b Anatomically open hypotheses: levels of inference 

Inference can be drawn at a number of different levels. SPM derives p values 

pertaining to  

1. set-level inference: the number of activated regions (i.e. number of clusters above 

a height and volume threshold) 

2. cluster-level inference: the number of activated voxels comprising a particular 

region (i.e. volume of cluster) 

3. voxel-level inference: the p-value for each voxel within that cluster. Significance 

testing in this thesis is limited to testing significance at the voxel level. 

 

These p values can be corrected for the multiple dependent comparisons based on 

c or more clusters with k or more voxels above a threshold t in an SPM of known 

smoothness. The probability P that a maximum value in a cluster would be greater 

than that observed under the null hypothesis (when no activation is present), can then 

be tested. To approximate P, SPM uses the expected Euler characteristic (a 

topological measure that is effectively the number of clusters minus the number of 

holes). At high thresholds, the expected Euler characteristic simply counts the 

number of regions above t. The expected Euler characteristic for a given threshold 

gives the probability of the maximum exceeding that threshold, indicating the test 

level that would just reject the null hypothesis at that voxel. This corresponds to the 

adjusted p value at that voxel – the probability that the maxima in a SPM would be 

greater than the voxel value.  

 

The expected Euler characteristic depends on the smoothness of the data. The 

smoothness of the statistical images is calculated from the component fields. These 
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are the residual fields (what is left over after the modelled response at each voxel is 

subtracted from the data) after they have been normalised by the variance at each 

individual voxel. Although the smoothness is parameterised by a variance-covariance 

matrix of the spatial partial derivatives, it is represented as the FWHM of an 

equivalent Gaussian point spread function (PSF). 

 

The expected number of clusters, the expected Euler characteristic, depends on 

the expected number of clusters of any size and the probability that the cluster will be 

bigger than k resels. The resel (resolution element) parameterises the number of 

independent tests. The total number of resels is equal to the volume of the search 

region divided by the product of the FWHMs of the smoothness in each dimension. 

As the smoothness increases, the number of resels decreases yielding fewer 

independent tests, hence the probability of obtaining a maxima as large as that 

observed gets smaller. 

 

In this thesis, I report activations surviving a corrected threshold of p<0.05. In 

addition, I report medial temporal activations with an uncorrected p<0.001 and 

correct these for the volume of the medial temporal region of interest. In the case of 

functional segregation within the hippocampus, the volume of the hippocampus was 

divided into anterior and posterior portions and the p values adjusted accordingly. 

 

2.7 Event-related fMRI 

 

 Event-related fMRI can be defined as the use of fMRI to detect transient 

haemodynamic responses to brief stimuli or tasks (Josephs et al., 1997). Event-
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related, or trial-based measurement is already standard in electrophysiology, namely 

stimulus-locked event-related potentials. Previous functional imaging methods, such 

as PET, have limited temporal resolution necessitating measurement of prolonged 

states of brain activity. Such state-based designs were initially adopted in fMRI and 

referred to as epoch-related designs, the first experiment presented in this thesis 

being an example. Improvements in sensitivity and temporal resolution of fMRI have 

allowed an event-related approach. The event-related approach offers several 

advantages (Josephs and Henson, 1999). 

 

1. The order of trials can be randomised hence the response to a trial is neither 

confounded by a subject’s cognitive set nor systematically influenced by 

previous trials (Johnson et al., 1997). 

2. Individual trials can be categorised or parameterised post-hoc according to a 

subject’s performance. An example is the categorisation of event related 

responses to presented words according to whether a particular word was 

subsequently remembered or forgotten in a test of free recall (chapter 6). 

3. Some experiments involve events that cannot be blocked, such as ‘oddball’ 

paradigms where the event of interest is a stimulus that violates the prevailing 

context. An oddball experiment is presented in chapter 5. 

4. Some events can occur unpredictably and can only be indicated by the subject 

(such as the spontaneous perceptual transitions measured by Portas et al., 1999). 

5. Event-related fMRI allows more direct comparison with other techniques such as 

ERP or psychophysics. 

6. Extensions to epoch-related designs. A state can be modelled, to first order, as a 

continuous train of events, each representing one trial within an epoch. This 
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method also enables stimulus or response parameters to be modelled within an 

epoch. For example, the second experiment presented in this thesis was epoch-

based, but analysed in an event-related manner to enable correct and incorrect 

trials to be modelled separately, and trial-by-trial within-epoch performance to be 

modelled parametrically. 

 

In analysing event-related data, the explanatory variables are created by 

convolving a set of delta functions, indicating the onset times of a particular event, 

with a small set of basis functions that model the haemodynamic responses to those 

events (Josephs et al., 1997). The approach adopted in this thesis was to employ a 

multivariate Taylor expansion of a mixture of gamma-functions which approximate 

to a canonical haemodynamic response function (HRF; Friston et al., 1998a). The 

higher order basis functions in this expansion include the partial derivative of the 

HRF with respect to time. This approach has the advantage that the parameter for 

each covariate is interpretable in terms of response magnitude (canonical HRF) and 

latency (temporal derivative). The canonical form and its derivative can be tested 

separately by means of univariate t-tests and together by multivariate F-tests. 

 

2.8 Optimising experimental design 

 

Optimisation involves maximising the sensitivity (signal:noise ratio) for 

particular contrasts (hypotheses) as a function of stimulus ordering and stimulus 

onset asynchrony (SOA). Any experimental design can be characterised by the 

minimal SOA, SOAmin, and the probability, p, of an event occurring each SOAmin 

(Friston et al., 1999). All experiments in this thesis contain multiple event types, for 
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which the efficiency of the design depends on the specific hypothesis (contrast). 

With a randomised design involving two event types, (ABBBABAABAABB etc) the 

efficiency of the differential effect is maximal at minimal SOAmin. However, 

efficiency of the common effect (versus baseline) is then minimal. When stimulus 

ordering is constrained, an alternating design may result (ABABABABA etc), for 

which the optimal SOAmin for a differential effect is approximately 8s. When the 

design needs to be sensitive to both the differential and common effects, ‘null events’ 

can be introduced, when no stimulus is presented (ABB-B--A-ABBAA- etc). The 

most efficient estimation of both the differential and common effects in this case is 

with minimal SOAmin. All experiments presented in this thesis examine differential 

effects within randomised designs, hence a minimal SOAmin has been adopted in all 

of the event-related experiments described. The duration of the physiological 

haemodynamic response, and, therefore, of the fitted response, is approximately 30 s. 

Although the stimulus onset asynchrony in the three event-related experiments 

presented in this thesis ranged from 2.5 - 4 s, leading to overlap of successive 

haemodynamic responses, SPM accounts for this overlap using an implicit 

convolution regression model (Friston et al., 1998b). 

 

 

2.9 Inferences about subjects and populations: Random vs Fixed effects 

analyses 

 

The statistical inference drawn from fMRI time series may be of two types. 

Firstly, the results may be specific to the particular subjects at the time of scanning. 

This fixed effects inference is drawn from the effect size relative to the within 
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subject variability. Highly significant results typically obtain from a fixed effects 

analysis because the degrees of freedom are high as they pertain to the number of 

scans across all subjects. The effect size is averaged across subjects hence 6 subjects 

are normally included in these analyses to provide a representative mean across 

subjects. However, the limitation of this type of analysis is that an effect size may be 

primarily driven by a few subjects. To overcome this one could perform a 

conjunction analysis across the six subjects which tests for regions commonly 

activated by a particular condition in all subjects. In essence, the fixed effects 

analysis is an extension of a case report, commonly used in clinical studies and 

animal lesion experiments, where an effect is observed in a particular subject and 

then this effect is replicated in further subjects. 

 

Random effects analyses allow inferences to be made about the population 

from which the sample of subjects was drawn. One observation per subject per 

condition is entered into a random effects analysis (usually a contrast of parameter 

estimates from a 1st level analysis). Hence the effect size is compared against the 

between subject variability in these contrasts. This type of analysis is, therefore, not 

at risk of being biased by strong effects in a subset of subjects. It follows that more 

subjects are required to achieve a significant result with random effects analyses, as 

the degrees of freedom depend on the number of subjects scanned, a suitable 

minimum number of subjects being 12. A random effects analysis was the default 

analysis for data presented in this thesis. 

 

Random effects analyses are typically a one-sample t-test testing whether the 

estimated effect size (i.e. contrast) is significantly greater than zero across all 
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subjects. In a fMRI experiment it is, however, unlikely that there is only one effect of 

interest. Take for example a 2x2 factorial design. Using one-sample t-tests to draw 

second level inferences would mean running separate analyses for each main effect 

and the interaction. An alternative is to conduct a repeated measures ANOVA, 

entering one observation for each of the four cells of the 2x2 design for each subject. 

This approach was adopted for the oddball experiment described in chapter 5. It 

should, however, be noted that if more than one condition is entered into the second 

level analysis, the assumption of sphericity (e.g. homogeneity of co-variance) must 

be made. This assumes that the between subject, within-condition variability is at the 

same level for each observation contrast (e.g. cell in the 2x2 factorial design).  
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